PRELIMINARY DRAINAGE REPORT

BOWMAN TRAIL/TR. No. 11331

LANDERS, CA
COUNTY OF
SAN BERNARDINO
April 24, 2014

Prepared by:

Civil Engineering • Surveying • Planning

California *Corporate* 109 E. 3rd St., San Bernardino, CA 92410 Phone 909-884-8217 Fax 909-889-0153

15252 Seneca Rd., Victorville, CA 92392 Phone 760-951-7676 Fax 760-241-0573

Arizona 5508 Clubhouse Dr., Fort Mohave, AZ 86426 Phone 928-768-1857 Fax 928-768-7086

2126 McCulloch Blvd., Ste. 8 Lake Havasu City, AZ 86403 Phone 928-680-6060 Fax 928-854-6530

PRELIMINARY DRAINAGE REPORT BOWMAN TRAIL/TR. No. 11331 LANDERS, CA

For APN's 0630-351-01 Thru 0630-351-15

Prepared for:

Sustainable Power Group, LLC 2949 E. Parley's Way, Ste. 310 Salt Lake City, UT, 84109 (801) 679-3500

Prepared By:

Ludwig Engineering Associates, Inc. 109 E. Third Street San Bernardino, CA 92410 Tel. (909) 884-8217 Fax (909) 889-0153

Report Preparation Date
April 24, 2014

TABLE OF CONTENTS

	ITEM PAGE	E
1.	DISCUSSION AND SUMMARY 1-	2
2.	PROJECT SITE MAPS	0
3.	SOIL GROUPS & MAP 1	1
4.	ANTECEDENT MOISTURE CONDITION MAP1	2
5.	LAND USE ZONING MAP	.3
6.	100-YEAR, 1-HOUR ISOHYTALS MAP 1	4
7.	HYDROLOGY INPUT TABLE PRE-DEVELOPMENT 1	.5
8.	CIVILD/CIVILDESIGN PROGRAM OUTPUT16-	36
9.	HYDROLOGY INPUT TABLE POST-DEVELOPMENT3	37
10.	HYDRAULIC CALCULATIONS	38
11.	CIVILD/CIVILDESIGN PROGRAM OUTPUT 39-4	19
11.	DRAINAGE MAPSBack Pocket	et

DISCUSSION AND SUMMARY

INTRODUCTION:

The purpose of this study is to analyze existing drainage patterns in and around the proposed solar project site. The Site is part of existing Tract No. 11331, the property is currently vacant & not in use. The project is bounded on the north by Herdmans Road (dirt road), on the east by Sunny Vista (dirt road), on the south by Sespe Street & Summers Road (dirt road), and on the west by Bowman Trail (dirt road).

OVERALL HYDROLOGY:

The offsite run-offs flows in the northeasterly direction, and is presently conveyed through the existing natural flowlines, generating a drainage tributary Areas 1 & 2 (23.2 acres) Q₁₀₀= 30.9 cfs node 3, Areas 6 & 7 (27.1 0.acres) Q₁₀₀= 33.5 cfs node 9, and Areas 9 & 10 (32.9 acres) Q₁₀₀= 36.7 cfs node 12 to project boundary.

ONSITE HYDROLOGY:

Onsite analysis involves determining pre-development storm run-off, and post-development storm runoff and mitigation measures. The existing site will be mostly undisturbed except for access roads and the switchyard location, which will be compacted native soil, and will be a gravel strip around the perimeter of site. Offsite runoffs will be conveyed through existing natural and historical flowlines as shown on the "Undeveloped Onsite/Offsite Watershed DRAINAGE MAP". Since the onsite area will not be disturbed other than the access roads and the switchyard location as impervious, which amounts to about 3.6 acres or 10 % of entire project, this is a conservative percentage since the compacted road will have some permeability, given us a post-developed Q100 of 189.1 cfs compared to pre-developed Q100 of 170.1 cfs. A 20 feet wide gravel strip around the project will mitigate some runoff and erosion control as well as a WQMP.

HYDROLOGY METHODOLOGY:

The calculated run-off flows are depicted on the enclosed Drainage Maps. All run-off values are calculated using the rational method as outlined in the 1986 San Bernardino County Hydrology Manual, assuming:

- a) 100 year storm frequency.
- b) 1-hour rainfall intensity = 1.3 in/hr.
- c) Slope on the intensity duration curve = 0.70
- d) Undeveloped Average Cover
- e) Hydrologic Soils Group "B"

All flows were calculated using "RSBC.EXE", a San Bernardino County Rational Hydrology Program by Civilcadd/Civildesign engineering software, version 7.0, 1989-2004.

HYDRAULIC METHODOLOGY:

All computed depths of flow were based on the manning's equation. Various interior and perimeter conveyance flow sections were checked for adequate hydraulic capacity, per rational method calculations report.

Manning calculations for typical flow sections capacities are based on the following:

- 1. Design flows and street slopes per various drainage maps;
- 2. A manning's roughness coefficient of 0.020 for the natural dirt channels.

CONCLUSION:

Detailed analysis indicated that a 100-year, 1-hour storm event over the fully developed onsite watershed will not produce significant peak flows greater than the existing condition and that can be conveyed by the interior existing natural flowlines and mitigated per gravel perimeter strip.

B C D

"OFFICE USE ONLY"

BOWMAN SOLAR PV SOLAR PROJECT

SAN BERNARDINO COUNTY, CA

3 MW AC SINGLE AXIS TRACKER SYSTEM PHOTOVOLTAIC SOLAR ARRAY DESIGN GENERAL INFORMATION

VICINITY MAP

Shrouts

Funday 83

Funday 83

Bowman Solar Site

Bowman

AGENCY CONTACTS

COUNTY:

SAN BERNARDINO COUNTY 909-387-8311

FIRE:

HOMESTEAD VALLEY/LANDERS 55481 JESSIE ROAD LANDERS, CA 92285 PHONE: 760-364-3211

SITE INFORMATION

PROPERTY OWNERS

SUSTAINABLE POWER GROUP 2749 E. PARLEY'S WAY SUITE 310 SALT LAKE CITY, UT 84109

ABBET FAMILY TRUST

MABBET FAMILY TRUST 1968 CIRCLE PARK LANE ENCINATAS, CA 92024

PROJECT APPLICANT

SUSTAINABLE POWER GROUP 2749 E. PARLEY'S WAY SUITE 310 SALT LAKE CITY, UT 84109

ACCESS NOTES:

THE PROPERTY CURRENTLY HAS FULL ACCESS TO BOWMAN TRAIL, HERDMANS ROAD, AND SUNNY VISTA ROAD.

LEGAL DESCRIPTION

LOTS 49-63 OF TRACT NO. 11331 IN THE COUNTY OF SAN BERNARDINO, STATE OF CALIFORNIA, AS PER PLAT RECORDED IN BOOK 158 OF MAPS, PAGES 8 TO 16, INCLUSIVE, RECORDS OF SAID COUNTY.

<u>UTILITY NOTES:</u>

REQUIRED.

- NO ONSITE WATER SERVICE WILL BE REQUIRED.
 NO ONSITE SEWER WILL BE
- 3. NO ONSITE GAS WILL BE REQUIRED.4. NO ONSITE TELEPHONE WILL BE
- REQUIRED
 5. NO ONSITE CABLE TV WILL BE
- REQUIRED.
 6. ELECTRICITY PROVIDED BY SCE.

FLOOD ZONE NOTE:

UNIDENTIFIED FEMA FLOOD ZONE AS PER FEMA MAP NO. 06071C7425H.

ASSESSORS PARCEL NUMBERS/OWNER:

0630-351-01 0630-351-02 0630-351-03 0630-351-04 0630-351-05 0630-351-06 0630-351-07 0630-351-09 0630-351-10 0630-351-11 0630-351-12 0630-351-13 0630-351-14

TOTAL ACREAGE = 34.23 ACRES.

COORDINATE DATUM:

HARN/CA CALIFORNIA STATE PLANE, ZONE V, US FOOT

CONFIDENTIAL

THIS MATERIAL IS THE PROPERTY OF
NORTHERN ENERGY & POWER LLC AND CONTAINS
CONFIDENTIAL INFORMATION WHICH MUST NOT BE
DUPLICATED, USED, OR DISCLOSED OTHER
THAN AS EXPRESSLY AUTHORIZED BY
NORTHERN ENERGY AND POWER LLC

REV. DATE DESIGN ENGINEER APPROV

REVISION DESCRIPTION

A 4/24/14

ISSUED FOR C.U.P.

LOCAL JOB NUMBER:

ROJECT TITLE:

BOWMAN SOLAR 3 MWAC SAN BERNARDINO COUNTY, CA

SHEET TITL

PV SOLAR PROJECT
GENERAL
INFORMATION

DRAWING NUMBER:

C1000

REVISION: DOCUMENT SIZE:

A ARCH D (24X36)

C-24 BOWMAN TRAIL LANDERS TR-1133/

Goat Mountain

Ludwig Engineering 109 E. 3rd Street San Bernardino, California 92410 (909) 884-8217 FAX (909) 889-0153

JOB	GL-0204					
SHEET	NO1_		_ OF _			
CALCUL	ATED BY_	GAG_		DATE_	_4-24-14_	
CHECK	ED BY		DATE			
SCALE						

SUSTAINABLE POWER GROUP, LLC LANDERS (BOWMAN TRAIL) PRE-DEVELOPMENT

-DEVELOPMENT REMARKS	Q100	COVER	SOIL	AREA	LENGTH	LOW	HIGH	AREA	NODE
KLWIAKKO	(CFS)	TYPE	TYPE	(AC)	(FT)	EL.(FT)	EL.(FT)	NO.	NO.
	UT	FILE: BOWMANTRAILSLANDERSRAT.OUT							
	<u> </u>	FILE. BOWMANTRAILSLANDERSRAT.OUT							
INITIAL SUBAREA	15.9	UND. AVG COVER	В	10	950	2975	3001	1	1-2
IRR CHANNEL FLOW+ SUBAREA	15.0	UND. AVG COVER	В	13.2	1325	2924	2975	2	2-3
IRR CHANNEL FLOW+ SUBAREA	12.3	UND. AVG COVER	В	18.3	1893	2876	2924	3	3-4
Confluence of minor streams	43.2								3-4
INITIAL SUBAREA	16.8	UND. AVG COVER	В	10	1000	2930	2969	4	5-6
IRR CHANNEL FLOW+ SUBAREA	0.0	UND. AVG COVER	В	1.4	1720	2876	2930	5	6-4
Confluence of minor streams 2 of 2	61.0								6-4
CHANNEL Travel Time only	61.0	UND. AVG COVER	В		460	2867	2876		4-7
Confluence of Main Streams 1 of 2	61.0								4-7
INITIAL SUBAREA	10.5	UND. AVG COVER	В	7.2	1000	2981	3001	6	1-8
IRR CHANNEL FLOW+ SUBAREA	23.0	UND. AVG COVER	В	19.9	1147	2938	2981	7	8-9
IRR CHANNEL FLOW+ SUBAREA	17.5	UND. AVG COVER	В	22.8	1495	2898	2938	8	9-10
Confluence of minor streams 1 of 2	51.0								9-10
INITIAL SUBAREA	8.6	UND. AVG	В	6.0	1000	2983	3001	9	1-11
IRR CHANNEL FLOW+ SUBAREA	28.1	UND. AVG COVER UND. AVG	В	26.9	1620	2936	2983	10	11-12
IRR CHANNEL FLOW+ SUBAREA	15.5	COVER	В	23.2	1485	2898	2936	11	12-10
Confluence of minor streams 2 of 2	104.1								12-10
IRR CHANNEL FLOW+ SUBAREA	104.1	UND. AVG COVER	В	8.0	1345	2867	2898	12	10-7
Confluence of Main Streams 2 of 2	170.1								10-7
 	1		1					1	L

San Bernardino County Rational Hydrology Program

(Hydrology Manual Date - August 1986)

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2005 Version 7.1 Rational Hydrology Study Date: 06/18/13

100-YEAR, 1-HOUR STORM EVENT,OFFSITE DRAINAGE UNDEVELOPED BOWMAN TRAIL, LANDERS TRIBUTARY AREA 1 TO 12

FILE: BOWMANTRAILSLANDERSRAT.OUT

Program License Serial Number 4070

******** Hydrology Study Control Information *********

Rational hydrology study storm event year is 100.0 Computed rainfall intensity:
Storm year = 100.00 1 hour rainfall = 1.300 (In.) Slope used for rainfall intensity curve b = 0.7000

Soil antecedent moisture condition (AMC) = 1

Process from Point/Station 1.000 to Point/Station 2.000 **** INITIAL AREA EVALUATION ****

UNDEVELOPED (average cover) subarea Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 69.00Adjusted SCS curve number for AMC 1 = 49.80 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm) = 0.812(In/Hr)Initial subarea data: Initial area flow distance = 950.000(Ft.) Top (of initial area) elevation = 3001.000(Ft.) Bottom (of initial area) elevation = 2975.000(Ft.) Difference in elevation = 26.000(Ft.) Slope = 0.02737 s(%) =2.74 $TC = k(0.706)*[(length^3)/(elevation change)]^0.2$ Initial area time of concentration = 22.514 min. Rainfall intensity = 2.582(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.617 Subarea runoff = 15.930(CFS) Total initial stream area = 10.000(Ac.) Pervious area fraction = 1.000 Initial area Fm value = 0.812(In/Hr)

3.000

Process from Point/Station 2.000 to Point/Station

**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

```
Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.815(Ft.), Average velocity = 5.300(Ft/s)
     ****** Irregular Channel Data *******
_____
Information entered for subchannel number 1:
Point number 'X' coordinate 'Y' coordinate
                 0.00
                                 1.50
     1
                10.00
                                 0.00
                              1.50
     3
                 20.00
Manning's 'N' friction factor = 0.030
______
Sub-Channel flow = 23.451(CFS)
 ' flow top width = 10.862(Ft.)
          velocity= 5.300(Ft/s)
  area = 4.424(Sq.Ft)
Froude number = 1.464
           Froude number = 1.464
Upstream point elevation = 2975.000(Ft.)
Downstream point elevation = 2924.000(Ft.)
Flow length = 1325.000(Ft.)
Travel time = 4.17 min.
Time of concentration = 26.68 min.
Depth of flow = 0.815(Ft.)
Average velocity = 5.300(Ft/s)
Total irregular channel flow = 23.451(CFS)
Irregular channel normal depth above invert elev. = 0.815(Ft.)
Average velocity of channel(s) = 5.300(Ft/s)
 Adding area flow to channel
UNDEVELOPED (average cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 69.00
Adjusted SCS curve number for AMC 1 = 49.80
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm) = 0.812(In/Hr)
Rainfall intensity = 2.293(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method)(Q=KCIA) is C = 0.581
Subarea runoff = 14.986(CFS) for
                                  13.200(Ac.)
Total runoff = 30.916(CFS)
Effective area this stream = 23.20(Ac.)
Total Study Area (Main Stream No. 1) = 23.20(Ac.)
Area averaged Fm value = 0.812(In/Hr)
Depth of flow = 0.904(Ft.), Average velocity = 5.680(Ft/s)
```

Process from Point/Station 3.000 to Point/Station 4.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

```
Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.874(Ft.), Average velocity = 4.851(Ft/s)
     ****** Irregular Channel Data *******
_____
Information entered for subchannel number 1:
Point number 'X' coordinate 'Y' coordinate
                 0.00
                                 1.50
     1
                 15.00
                                 0.00
                              1.50
     3
                 30.00
Manning's 'N' friction factor = 0.028
______
Sub-Channel flow = 37.076(CFS)
 ' ' flow top width = 17.484(Ft.)
          velocity= 4.851(Ft/s)
  ' area = 7.643(Sq.Ft)
' Froude number = 1.293
           Froude number = 1.293
Upstream point elevation = 2924.000(Ft.)
Downstream point elevation = 2876.000(Ft.)
Flow length = 1893.000(Ft.)
Travel time = 6.50 min.
Time of concentration = 33.18 min.
Depth of flow = 0.874(Ft.)
Average velocity = 4.851(Ft/s)
Total irregular channel flow = 37.076(CFS)
Irregular channel normal depth above invert elev. = 0.874(Ft.)
Average velocity of channel(s) = 4.851(Ft/s)
 Adding area flow to channel
UNDEVELOPED (average cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 69.00
Adjusted SCS curve number for AMC 1 = 49.80
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm) = 0.812(In/Hr)
Rainfall intensity = 1.968(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method)(Q=KCIA) is C = 0.529
Subarea runoff = 12.261(CFS) for
                                  18.300(Ac.)
Total runoff = 43.176(CFS)
Effective area this stream = 41.50(Ac.)
Total Study Area (Main Stream No. 1) = 41.50(Ac.)
Area averaged Fm value = 0.812(In/Hr)
Depth of flow = 0.926(Ft.), Average velocity = 5.040(Ft/s)
```

Process from Point/Station **** CONFLUENCE OF MAIN STREAMS ****

3.000 to Point/Station

4.000

The following data inside Main Stream is listed:

In Main Stream number: 1

Stream flow area = 41.500(Ac.)

Runoff from this stream = 43.176(CFS)

Time of concentration = 33.18 min.

Rainfall intensity = 1.968(In/Hr)

Area averaged loss rate (Fm) = 0.8119(In/Hr)

Area averaged Pervious ratio (Ap) = 1.0000

Program is now starting with Main Stream No. 2

Process from Point/Station 5.000 to Point/Station 6.000 **** INITIAL AREA EVALUATION ****

```
UNDEVELOPED (average cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 69.00
Adjusted SCS curve number for AMC 1 = 49.80
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm) = 0.812(In/Hr)
Initial subarea data:
Initial area flow distance = 1000.000(Ft.)
Top (of initial area) elevation = 2969.000(Ft.)
Bottom (of initial area) elevation = 2930.000(Ft.)
Difference in elevation = 39.000(Ft.)
Slope = 0.03900 \text{ s(%)} =
                               3.90
TC = k(0.706)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 21.409 min.
Rainfall intensity =
                         2.674(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.627
Subarea runoff = 16.763(CFS)
Total initial stream area =
                                 10.000(Ac.)
Pervious area fraction = 1.000
Initial area Fm value = 0.812(In/Hr)
```

Process from Point/Station 6.000 to Point/Station 4.000

**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

```
Estimated mean flow rate at midpoint of channel = 0.000(CFS)
 Depth of flow = 0.624(Ft.), Average velocity = 4.312(Ft/s)
      ****** Irregular Channel Data *******
 _____
 Information entered for subchannel number 1:
 Point number 'X' coordinate 'Y' coordinate
                  0.00
                                  1.50
      1
                 15.00
                                  0.00
                               1.50
      3
                 30.00
 Manning's 'N' friction factor = 0.028
 _____
 Sub-Channel flow = 16.800(CFS)
  ' ' flow top width = 12.483(Ft.)
           velocity= 4.312(Ft/s)
   area = 3.896(Sq.Ft)
Froude number = 1.360
            Froude number = 1.360
 Upstream point elevation = 2930.000(Ft.)
 Downstream point elevation = 2876.000(Ft.)
 Flow length = 1720.000(Ft.)
 Travel time = 6.65 min.
 Time of concentration = 28.06 min.
 Depth of flow = 0.624(Ft.)
 Average velocity = 4.312(Ft/s)
 Total irregular channel flow = 16.800(CFS)
 Irregular channel normal depth above invert elev. = 0.624(Ft.)
 Average velocity of channel(s) = 4.312(Ft/s)
  Adding area flow to channel
 UNDEVELOPED (average cover) subarea
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 69.00
 Adjusted SCS curve number for AMC 1 = 49.80
 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm) = 0.812(In/Hr)
 The area added to the existing stream causes a
 a lower flow rate of Q = 14.377(CFS)
therefore the upstream flow rate of Q = 16.763(CFS) is being used
 Rainfall intensity = 2.213(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified
 rational method)(Q=KCIA) is C = 0.570
 Subarea runoff = 0.000(CFS) for 1.400(Ac.)
 Total runoff = 16.763(CFS)
 Effective area this stream =
                              11.40(Ac.)
 Total Study Area (Main Stream No. 2) = 52.90(Ac.)
 Area averaged Fm value = 0.812(In/Hr)
```

Depth of flow = 0.624(Ft.), Average velocity = 4.310(Ft/s)

Process from Point/Station 6.000 to Point/Station 4.000

**** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 11.400(Ac.) Runoff from this stream = 16.763(CFS) Time of concentration = 28.06 min. Rainfall intensity = 2.213(In/Hr) Area averaged loss rate (Fm) = 0.8119(In/Hr)Area averaged Pervious ratio (Ap) = 1.0000 Summary of stream data: Stream Flow rate Area TC Fm Rainfall Intensity No. (CFS) (Ac.) (min) (In/Hr) (In/Hr) 43.18 41.500 33.18 0.812 1.968 16.76 11.400 28.06 0.812 2.213 Qmax(1) =1.000 * 1.000 * 43.176) + 0.825 * 1.000 * 16.763) + =57.005 Qmax(2) =1.212 * 0.846 * 1.000 * 43.176) + 1.000 * 16.763) + =61.015 Total of 2 main streams to confluence: Flow rates before confluence point: 44.176 17.763 Maximum flow rates at confluence using above data: 57.005 61.015 Area of streams before confluence: 41.500 11.400 Effective area values after confluence: 52.900 46.488 Results of confluence: Total flow rate = 61.015(CFS) Time of concentration = 28.057 min. Effective stream area after confluence = 46.488(Ac.) Study area average Pervious fraction(Ap) = 1.000 Study area average soil loss rate(Fm) = 0.812(In/Hr)

52.90(Ac.)

Study area total =

Process from Point/Station 4.000 to Point/Station 7.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

```
Depth of flow = 1.106(Ft.), Average velocity = 4.986(Ft/s)
    ****** Irregular Channel Data *******
_____
Information entered for subchannel number 1:
Point number 'X' coordinate 'Y' coordinate
               0.00
                            1.50
    1
    2
              15.00
                             0.00
    3
               30.00
                             1.50
Manning's 'N' friction factor = 0.028
______
Sub-Channel flow = 61.016(CFS)
 ' ' flow top width = 22.125(Ft.)
         velocity= 4.986(Ft/s)
     area = 12.238(Sq.Ft)
     ' Froude number = 1.181
Upstream point elevation = 2876.000(Ft.)
Downstream point elevation = 2867.000(Ft.)
Flow length = 460.000(Ft.)
Travel time = 1.54 \text{ min}.
Time of concentration = 29.59 min.
Depth of flow = 1.106(Ft.)
Average velocity = 4.986(Ft/s)
Total irregular channel flow = 61.015(CFS)
Irregular channel normal depth above invert elev. = 1.106(Ft.)
Average velocity of channel(s) = 4.986(Ft/s)
```

Process from Point/Station

4.000 to Point/Station

7.000

**** CONFLUENCE OF MAIN STREAMS ****

The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 46.488(Ac.) Runoff from this stream = 61.015(CFS) Time of concentration = 29.59 min. Rainfall intensity = 2.132(In/Hr) Area averaged loss rate (Fm) = 0.8119(In/Hr)

Area averaged Pervious ratio (Ap) = 1.0000

Program is now starting with Main Stream No. 2

Process from Point/Station 1.000 to Point/Station 8.000 **** INITIAL AREA EVALUATION ****

UNDEVELOPED (average cover) subarea Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 69.00Adjusted SCS curve number for AMC 1 = 49.80 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm) = 0.812(In/Hr)Initial subarea data: Initial area flow distance = 1000.000(Ft.) Top (of initial area) elevation = 3001.000(Ft.) Bottom (of initial area) elevation = 2981.000(Ft.) Difference in elevation = 20.000(Ft.) Slope = 0.02000 s(%) =2.00 $TC = k(0.706)*[(length^3)/(elevation change)]^0.2$ Initial area time of concentration = 24.468 min. Rainfall intensity = 2.436(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.600 Subarea runoff = 10.522(CFS) Total initial stream area = 7.200(Ac.) Pervious area fraction = 1.000 Initial area Fm value = 0.812(In/Hr)

Process from Point/Station 8.000 to Point/Station 9.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

```
Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.686(Ft.), Average velocity = 4.684(Ft/s)
     ****** Irregular Channel Data *******
_____
Information entered for subchannel number 1:
Point number 'X' coordinate 'Y' coordinate
                 0.00
     1
                                 1.50
                15.00
                                 0.00
                              1.50
     3
                 30.00
Manning's 'N' friction factor = 0.030
______
Sub-Channel flow = 22.052(CFS)
 ' flow top width = 13.722(Ft.)
          velocity= 4.684(Ft/s)
  area = 4.707(Sq.Ft)
Froude number = 1.409
           Froude number = 1.409
Upstream point elevation = 2981.000(Ft.)
Downstream point elevation = 2938.000(Ft.)
Flow length = 1147.000(Ft.)
Travel time = 4.08 min.
Time of concentration = 28.55 min.
Depth of flow = 0.686(Ft.)
Average velocity = 4.684(Ft/s)
Total irregular channel flow = 22.052(CFS)
Irregular channel normal depth above invert elev. = 0.686(Ft.)
Average velocity of channel(s) = 4.684(Ft/s)
 Adding area flow to channel
UNDEVELOPED (average cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 69.00
Adjusted SCS curve number for AMC 1 = 49.80
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm) = 0.812(In/Hr)
Rainfall intensity = 2.186(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method)(Q=KCIA) is C = 0.566
Subarea runoff = 23.002(CFS) for
                                  19.900(Ac.)
Total runoff = 33.525(CFS)
Effective area this stream =
                              27.10(Ac.)
Total Study Area (Main Stream No. 2) = 80.00(Ac.)
Area averaged Fm value = 0.812(In/Hr)
Depth of flow = 0.803(Ft.), Average velocity = 5.202(Ft/s)
```

Process from Point/Station 9.000 to Point/Station 10.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

```
Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.933(Ft.), Average velocity = 4.858(Ft/s)
     ****** Irregular Channel Data *******
_____
Information entered for subchannel number 1:
Point number 'X' coordinate 'Y' coordinate
                 0.00
     1
                                 1.50
                 15.00
                                 0.00
                              1.50
     3
                 30.00
Manning's 'N' friction factor = 0.030
______
Sub-Channel flow = 42.314(CFS)
 ' flow top width = 18.665(Ft.)
          velocity= 4.858(Ft/s)
  ' area = 8.710(Sq.Ft)
' Froude number = 1.25
           Froude number = 1.253
Upstream point elevation = 2938.000(Ft.)
Downstream point elevation = 2898.000(Ft.)
Flow length = 1495.000(Ft.)
Travel time = 5.13 min.
Time of concentration = 33.68 min.
Depth of flow = 0.933(Ft.)
Average velocity = 4.858(Ft/s)
Total irregular channel flow = 42.314(CFS)
Irregular channel normal depth above invert elev. = 0.933(Ft.)
Average velocity of channel(s) = 4.858(Ft/s)
 Adding area flow to channel
UNDEVELOPED (average cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 69.00
Adjusted SCS curve number for AMC 1 = 49.80
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm) = 0.812(In/Hr)
Rainfall intensity = 1.948(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method)(Q=KCIA) is C = 0.525
Subarea runoff = 17.481(CFS) for
                                  22.800(Ac.)
Total runoff = 51.006(CFS)
Effective area this stream =
                              49.90(Ac.)
Total Study Area (Main Stream No. 2) = 102.80(Ac.)
Area averaged Fm value = 0.812(In/Hr)
Depth of flow = 1.001(Ft.), Average velocity = 5.091(Ft/s)
```

Process from Point/Station 9.000 to Point/Station 10.000 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 2 in normal stream number 1

Stream flow area = 49.900(Ac.)

Runoff from this stream = 51.006(CFS)

Time of concentration = 33.68 min. Rainfall intensity = 1.948(In/Hr)

Area averaged loss rate (Fm) = 0.8119(In/Hr)

Area averaged Pervious ratio (Ap) = 1.0000

Process from Point/Station 1.000 to Point/Station 11.000 **** INITIAL AREA EVALUATION ****

```
UNDEVELOPED (average cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 69.00
Adjusted SCS curve number for AMC 1 = 49.80
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm) = 0.812(In/Hr)
Initial subarea data:
Initial area flow distance = 1000.000(Ft.)
Top (of initial area) elevation = 3001.000(Ft.)
Bottom (of initial area) elevation = 2983.000(Ft.)
Difference in elevation = 18.000(Ft.)
Slope = 0.01800 \text{ s(%)} =
                              1.80
TC = k(0.706)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 24.989 min.
Rainfall intensity =
                         2.400(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.596
Subarea runoff =
                    8.576(CFS)
Total initial stream area =
                                  6.000(Ac.)
Pervious area fraction = 1.000
Initial area Fm value = 0.812(In/Hr)
```

Process from Point/Station 11.000 to Point/Station 12.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

```
Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.727(Ft.), Average velocity = 4.284(Ft/s)
     ****** Irregular Channel Data *******
_____
Information entered for subchannel number 1:
Point number 'X' coordinate 'Y' coordinate
                 0.00
                                 1.50
     1
                 15.00
                                 0.00
                              1.50
     3
                 30.00
Manning's 'N' friction factor = 0.030
______
Sub-Channel flow = 22.652(CFS)
 ' flow top width = 14.544(Ft.)
          velocity= 4.284(Ft/s)
  area = 5.288(Sq.Ft)
Froude number = 1.252
           Froude number = 1.252
Upstream point elevation = 2983.000(Ft.)
Downstream point elevation = 2936.000(Ft.)
Flow length = 1620.000(Ft.)
Travel time = 6.30 min.
Time of concentration = 31.29 min.
Depth of flow = 0.727(Ft.)
Average velocity = 4.284(Ft/s)
Total irregular channel flow = 22.652(CFS)
Irregular channel normal depth above invert elev. = 0.727(Ft.)
Average velocity of channel(s) = 4.284(Ft/s)
 Adding area flow to channel
UNDEVELOPED (average cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 69.00
Adjusted SCS curve number for AMC 1 = 49.80
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm) = 0.812(In/Hr)
Rainfall intensity = 2.050(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method)(Q=KCIA) is C = 0.544
Subarea runoff = 28.097(CFS) for
                                  26.900(Ac.)
Total runoff = 36.673(CFS)
Effective area this stream =
                              32.90(Ac.)
Total Study Area (Main Stream No. 2) = 135.70(Ac.)
Area averaged Fm value = 0.812(In/Hr)
Depth of flow = 0.871(Ft.), Average velocity = 4.832(Ft/s)
```

Process from Point/Station 12.000 to Point/Station 10.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

```
Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.959(Ft.), Average velocity = 4.837(Ft/s)
     ****** Irregular Channel Data *******
_____
Information entered for subchannel number 1:
Point number 'X' coordinate 'Y' coordinate
                 0.00
                                 1.50
     1
                 15.00
                                 0.00
                              1.50
     3
                 30.00
Manning's 'N' friction factor = 0.030
______
Sub-Channel flow = 44.443(CFS)
 ' flow top width = 19.172(Ft.)
          velocity= 4.837(Ft/s)
  area = 9.189(Sq.Ft)
' Froude number = 1.23
           Froude number = 1.231
Upstream point elevation = 2936.000(Ft.)
Downstream point elevation = 2898.000(Ft.)
Flow length = 1485.000(Ft.)
Travel time = 5.12 min.
Time of concentration = 36.41 min.
Depth of flow = 0.959(Ft.)
Average velocity = 4.837(Ft/s)
Total irregular channel flow = 44.443(CFS)
Irregular channel normal depth above invert elev. = 0.959(Ft.)
Average velocity of channel(s) = 4.837(Ft/s)
 Adding area flow to channel
UNDEVELOPED (average cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 69.00
Adjusted SCS curve number for AMC 1 = 49.80
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm) = 0.812(In/Hr)
Rainfall intensity = 1.844(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method)(Q=KCIA) is C = 0.504
Subarea runoff = 15.446(CFS) for
                                  23.200(Ac.)
Total runoff = 52.119(CFS)
Effective area this stream =
                              56.10(Ac.)
Total Study Area (Main Stream No. 2) = 158.90(Ac.)
Area averaged Fm value = 0.812(In/Hr)
Depth of flow = 1.018(Ft.), Average velocity = 5.033(Ft/s)
```

Process from Point/Station 12.000 to Point/Station 10.000 **** CONFLUENCE OF MINOR STREAMS ****

```
Along Main Stream number: 2 in normal stream number 2
Stream flow area = 56.100(Ac.)
Runoff from this stream =
                            52.119(CFS)
Time of concentration = 36.41 min.
Rainfall intensity = 1.844(In/Hr)
Area averaged loss rate (Fm) = 0.8119(In/Hr)
Area averaged Pervious ratio (Ap) = 1.0000
Summary of stream data:
                  Area TC Fm Rainfall Intensity
Stream Flow rate
No. (CFS) (Ac.) (min) (In/Hr)
                                          (In/Hr)
             49.900
     51.01
                        33.68
                                 0.812
                                            1.948
     52.12
              56.100
                        36.41
                                 0.812
                                            1.844
Qmax(1) =
        1.000 *
                 1.000 *
                            51.006) +
        1.100 * 0.925 * 52.119) + = 104.047
Qmax(2) =
        0.909 *
                1.000 * 51.006) +
        1.000 *
                 1.000 * 52.119) + =
                                            98.478
Total of 2 streams to confluence:
Flow rates before confluence point:
     51.006 52.119
Maximum flow rates at confluence using above data:
     104.047
              98.478
Area of streams before confluence:
      49.900
               56.100
Effective area values after confluence:
     101.791
               106.000
Results of confluence:
Total flow rate = 104.047(CFS)
Time of concentration = 33.678 min.
Effective stream area after confluence = 101.791(Ac.)
Study area average Pervious fraction(Ap) = 1.000
Study area average soil loss rate(Fm) = 0.812(In/Hr)
Study area total (this main stream) = 106.00(Ac.)
```

Process from Point/Station 10.000 to Point/Station 7.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

```
Estimated mean flow rate at midpoint of channel = 0.000(CFS)
 Depth of flow = 1.345(Ft.), Average velocity = 5.753(Ft/s)
      ****** Irregular Channel Data *******
 _____
 Information entered for subchannel number 1:
 Point number 'X' coordinate 'Y' coordinate
                  0.00
                                  1.50
      1
                 15.00
                                  0.00
                               1.50
      3
                 30.00
 Manning's 'N' friction factor = 0.030
 _____
 Sub-Channel flow = 104.079(CFS)
  ' flow top width = 26.900(Ft.)
           velocity= 5.753(Ft/s)
   area = 18.091(Sq.Ft)
Froude number = 1.236
            Froude number = 1.236
 Upstream point elevation = 2898.000(Ft.)
 Downstream point elevation = 2867.000(Ft.)
 Flow length = 1345.000(Ft.)
 Travel time = 3.90 min.
 Time of concentration = 37.57 min.
 Depth of flow = 1.345(Ft.)
 Average velocity = 5.753(Ft/s)
 Total irregular channel flow = 104.079(CFS)
 Irregular channel normal depth above invert elev. = 1.345(Ft.)
 Average velocity of channel(s) = 5.753(Ft/s)
  Adding area flow to channel
 UNDEVELOPED (average cover) subarea
 Decimal fraction soil group A = 0.000
 Decimal fraction soil group B = 1.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 SCS curve number for soil(AMC 2) = 69.00
 Adjusted SCS curve number for AMC 1 = 49.80
 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm) = 0.812(In/Hr)
 The area added to the existing stream causes a
 a lower flow rate of Q = 98.027(CFS)
therefore the upstream flow rate of Q = 104.047(CFS) is being used
 Rainfall intensity = 1.804(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified
 rational method)(Q=KCIA) is C = 0.495
 Subarea runoff = 0.000(CFS) for
                                   8.000(Ac.)
 Total runoff = 104.047 (CFS)
 Effective area this stream = 109.79(Ac.)
 Total Study Area (Main Stream No. 2) = 166.90(Ac.)
 Area averaged Fm value = 0.812(In/Hr)
```

```
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area =
                    109.791(Ac.)
Runoff from this stream = 104.047(CFS)
Time of concentration = 37.57 min.
Rainfall intensity =
                       1.804(In/Hr)
Area averaged loss rate (Fm) = 0.8119(In/Hr)
Area averaged Pervious ratio (Ap) = 1.0000
Summary of stream data:
Stream Flow rate
                  Area
                          TC
                                          Rainfall Intensity
                                 Fm
No. (CFS) (Ac.)
                          (min) (In/Hr)
                                          (In/Hr)
     61.02
             46.488
                         29.59
                                 0.812
                                            2.132
    104.05
           109.791
                         37.57
                                 0.812
                                            1.804
Qmax(1) =
        1.000 *
                 1.000 *
                            61.015) +
        1.331 *
                0.788 * 104.047) + =
                                            170.070
Qmax(2) =
        0.751 *
                1.000 *
                            61.015) +
        1.000 *
                 1.000 *
                            104.047) + =
                                            149.897
Total of 2 main streams to confluence:
Flow rates before confluence point:
     62.015
               105.047
Maximum flow rates at confluence using above data:
     170.070
                  149.897
Area of streams before confluence:
      46.488
             109.791
Effective area values after confluence:
     132.963
                 156.280
Results of confluence:
Total flow rate = 170.070(CFS)
Time of concentration =
                         29.594 min.
Effective stream area after confluence =
                                          132.963(Ac.)
Study area average Pervious fraction(Ap) = 1.000
Study area average soil loss rate(Fm) = 0.812(In/Hr)
Study area total = 156.28(Ac.)
End of computations, Total Study Area =
                                               166.90 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Note: These figures do not consider reduced effective area
effects caused by confluences in the rational equation.
Area averaged pervious area fraction(Ap) = 1.000
Area averaged SCS curve number = 69.0
```

Ludwig Engineering 109 E. 3rd Street San Bernardino, California 92410 (909) 884-8217 FAX (909) 889-0153

JOB	GL-0204				
SHEET	NO1_		_ OF		
CALCUL	ATED BY_	_GAG_		DATE _	_4-24-14
CHECKE	ED BY		DATE		
SCALE					

POST-DEVLOPMENT

NO. NO. EL.(FT) EL.(FT) (FT) (AC) TYPE (CFS) REMARKS	SUSTAINABLE POWER GROUP, LLC LANDERS (BOWMAN TRAIL) POST-DEVELOPMENT									
FILE: POSTDEVBOWMAN.OUT		AREA	HIGH	LOW	LENGTH	AREA	SOIL	COVER		REMARKS
1-2	NO.	NO.	EL.(FT)	EL.(FT)	(FT)	(AC)	TYPE	TYPE	(CFS)	
1-2				FU F. 1	OCTOEVO	OVA/NA A N. O				
1-2				FILE: I	OPIDEAR	OWINAN.O	ΙUI		-	
1-2							_	UND. AVG		INITIAL SUBAREA
2-3 2 2930 2867 1720 8.3 B COVER 8.6 IRR CHANNEL FLOW+ SUBAREA 2-3 31.3 Confluence of Main streams 1 of 3 4-4 offsite 30.9 User specified info at point, offsite runoff 4-3 3 2924 2867 1600 9.3 B COVER 4.1 IRR CHANNEL FLOW+ SUBAREA 4-3 5-5 offsite 35 Confluence of Main streams 2 of 3 5-5 offsite 104.1 User specified info at point, offsite runoff 5-3 4 2898 2867 800 8.1 B UND. AVG COVER 11.2 IRR CHANNEL FLOW+ SUBAREA Confluence of Main Streams	1-2	1	2969	2930	1000	10	В	COVER	22.7	
2-3 31.3 Confluence of Main streams 1 of 3 4-4 offsite 30.9 User specified info at point, offsite runoff 4-3 3 2924 2867 1600 9.3 B UND. AVG COVER 4.1 IRR CHANNEL FLOW+ SUBAREA 4-3 35 Confluence of Main streams 2 of 3 5-5 offsite 104.1 User specified info at point, offsite runoff 5-3 4 2898 2867 800 8.1 B UND. AVG COVER 11.2 IRR CHANNEL FLOW+ SUBAREA Confluence of Main Streams	2.2	2	2020	2067	1720	0 2	Ь		9.6	IDD CHANNEL ELOW: SUBADEA
2-3 31.3 1 of 3	2-3		2930	2007	1720	0.3	ь	COVER	0.0	IKK CHANNEET LOWF SOBAKEA
2-3 31.3 1 of 3										
4-4 offsite 30.9 User specified info at point, offsite runoff 4-3 3 2924 2867 1600 9.3 B UND. AVG COVER 4.1 IRR CHANNEL FLOW+ SUBAREA 4-3 3 5 Confluence of Main streams 2 of 3 5-5 offsite 104.1 User specified info at point, offsite runoff 5-3 4 2898 2867 800 8.1 B UND. AVG COVER 11.2 IRR CHANNEL FLOW+ SUBAREA Confluence of Main Streams	0.0								24.0	
4-4 offsite 30.9 offsite runoff 4-3 3 2924 2867 1600 9.3 B UND. AVG COVER 4.1 IRR CHANNEL FLOW+ SUBAREA 4-3 35 Confluence of Main streams 2 of 3 5-5 offsite 104.1 User specified info at point, offsite runoff 5-3 4 2898 2867 800 8.1 B UND. AVG COVER 11.2 IRR CHANNEL FLOW+ SUBAREA Confluence of Main Streams Confluence of Main Streams	2-3								31.3	1 01 3
4-4 offsite 30.9 offsite runoff 4-3 3 2924 2867 1600 9.3 B UND. AVG COVER 4.1 IRR CHANNEL FLOW+ SUBAREA 4-3 35 Confluence of Main streams 2 of 3 5-5 offsite 104.1 User specified info at point, offsite runoff 5-3 4 2898 2867 800 8.1 B UND. AVG COVER 11.2 IRR CHANNEL FLOW+ SUBAREA Confluence of Main Streams Confluence of Main Streams										
4-3 3 2924 2867 1600 9.3 B UND. AVG COVER 4.1 IRR CHANNEL FLOW+ SUBAREA 4-3 35 Confluence of Main streams 2 of 3 5-5 offsite 104.1 User specified info at point, offsite runoff 5-3 4 2898 2867 800 8.1 B UND. AVG COVER 11.2 IRR CHANNEL FLOW+ SUBAREA Confluence of Main Streams									00.0	
4-3 3 2924 2867 1600 9.3 B COVER 4.1 IRR CHANNEL FLOW+ SUBAREA 4-3 35 Confluence of Main streams 2 of 3 5-5 offsite 104.1 User specified info at point, offsite runoff 5-3 4 2898 2867 800 8.1 B UND. AVG COVER 11.2 IRR CHANNEL FLOW+ SUBAREA Confluence of Main Streams	4-4	offsite							30.9	offsite runoff
4-3 35 Confluence of Main streams 2 of 3 5-5 offsite 104.1 User specified info at point, offsite runoff 5-3 4 2898 2867 800 8.1 B UND. AVG COVER 11.2 IRR CHANNEL FLOW+ SUBAREA Confluence of Main Streams	1-3	2	2024	2867	1600	0.3	R		11	IDD CHANNEL ELOW: SUBADEA
4-3 35 2 of 3 5-5 offsite 104.1 User specified info at point, offsite runoff 5-3 4 2898 2867 800 8.1 B UND. AVG COVER 11.2 IRR CHANNEL FLOW+ SUBAREA Confluence of Main Streams	4-3	3	2924	2007	1000	9.3	ь	COVER	4.1	IRR CHANNEL FLOW+ SUBAREA
4-3 35 2 of 3 5-5 offsite 104.1 User specified info at point, offsite runoff 5-3 4 2898 2867 800 8.1 B UND. AVG COVER 11.2 IRR CHANNEL FLOW+ SUBAREA Confluence of Main Streams									ļ	Openition on a first in the
5-5 offsite	4.0								25	
5-5 offsite 104.1 offsite runoff 5-3 4 2898 2867 800 8.1 B UND. AVG COVER 11.2 IRR CHANNEL FLOW+ SUBAREA Confluence of Main Streams	4-3								აა	2 01 3
5-5 offsite 104.1 offsite runoff 5-3 4 2898 2867 800 8.1 B UND. AVG COVER 11.2 IRR CHANNEL FLOW+ SUBAREA Confluence of Main Streams										
5-3 4 2898 2867 800 8.1 B UND. AVG COVER 11.2 IRR CHANNEL FLOW+ SUBAREA Confluence of Main Streams									4044	
5-3 4 2898 2867 800 8.1 B COVER 11.2 IRR CHANNEL FLOW+ SUBAREA Confluence of Main Streams	5-5	offsite							104.1	offsite runoff
Confluence of Main Streams	5-3	1	2808	2867	800	Q 1	R		11 2	IRR CHANNEL FLOW+ SUBAREA
	3-3	7	2030	2007	000	0.1	D	COVER	11.2	
	5-3								189 5	
	J-3								100.0	3 3.3
									1	
									1	
		1							-	
		+ -							-	
							-			
		<u> </u>								
									1	
									1	
									1	

San Bernardino County Rational Hydrology Program

(Hydrology Manual Date - August 1986)

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2005 Version 7.1 Rational Hydrology Study Date: 05/02/14

100 -YEAR, 1-HOUR STORM EVENT, ONSITE DRAINAGE POST-DEVELOPMENT BOWMAN TRAIL, LANDERS, CA TRIBUTARY AREAS 1 TO 4 FILE: POSTDEVBOWMAN.OUT

Program License Serial Number 4070

******* Hydrology Study Control Information *******

matorogy beday concror information

Rational hydrology study storm event year is 100.0 Computed rainfall intensity:

Storm year = 100.00 1 hour rainfall = 1.300 (In.)

Slope used for rainfall intensity curve b = 0.7000

Soil antecedent moisture condition (AMC) = 1

Ludwig Engineezing
109 E. Third St.
San Bernardino, CA 92410
Ph. 909-884-8217 Fax 909-889-0153

JOB		-
SHEET NO	OF	_
CALCULATED BY	DATE	_
CHECKED BY	DATE	

SCALE	
CARULATE EFFECTIVE ARED & O. RUNDET NOOF D	1775178
$Q = 0.9 (I - Fm) Ae$ $\therefore Ae = [Q 0.9 (I - Fm)]$	TC = 26.68 min. Q = 30.9055 Fm = 0.512 m/m T = 2.29 m/m
Ae = 30.9 0.9(2.29-0.8/2) = 23.2 Ac	7 = 2.29 m/he
CAPOULANT EFFECTIVE ARES C OF	1C - 22.00 mg
$Q = \rho. q C I - F_m A e$	Q = 104.0 CFs Fin = 0.812 m/b T = 1.844 m/b =
Ac= 104-1 = 1/2.1Ac 0.9(1.844-0.8/2)	

Process from Point/Station 1.000 to Point/Station 2.000 **** INITIAL AREA EVALUATION ****

Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 25.00Adjusted SCS curve number for AMC 1 = 12.00 Pervious ratio(Ap) = 0.9000 Max loss rate(Fm) = 0.900(In/Hr) Initial subarea data: Initial area flow distance = 1000.000(Ft.) Top (of initial area) elevation = 2969.000(Ft.) Bottom (of initial area) elevation = 2930.000(Ft.) Difference in elevation = 39.000(Ft.) 0.03900 s(%) =Slope = 3.90 $TC = k(0.496)*[(length^3)/(elevation change)]^0.2$ Initial area time of concentration = 15.054 min. Rainfall intensity = 3.422(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.663 Subarea runoff = 22.699(CFS) Total initial stream area = 10.000(Ac.) Pervious area fraction = 0.900

Initial area Fm value = 0.900(In/Hr)

Process from Point/Station 2.000 to Point/Station 3.000

**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

```
Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.634(Ft.), Average velocity = 5.773(Ft/s)
     ****** Irregular Channel Data *******
_____
Information entered for subchannel number 1:
Point number 'X' coordinate 'Y' coordinate
     1
                 0.00
                                 0.90
     2
                 20.00
                                 0.50
     3
                 30.00
                                 0.00
                              1.00
                 32.00
Manning's 'N' friction factor = 0.020
_____
Sub-Channel flow = 27.066(CFS)
 ' ' flow top width = 17.961(Ft.)
          velocity= 5.773(Ft/s)
           area = 4.688(Sq.Ft)
      ' Froude number = 1.991
Upstream point elevation = 2930.000(Ft.)
Downstream point elevation = 2867.000(Ft.)
Flow length = 1720.000(Ft.)
Travel time = 4.97 min.
Time of concentration = 20.02 min.
Depth of flow = 0.634(Ft.)
Average velocity = 5.773(Ft/s)
Total irregular channel flow = 27.066(CFS)
Irregular channel normal depth above invert elev. = 0.634(Ft.)
Average velocity of channel(s) = 5.773(Ft/s)
 Adding area flow to channel
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 25.00
Adjusted SCS curve number for AMC 1 = 12.00
Pervious ratio(Ap) = 0.9000 Max loss rate(Fm) = 0.900(In/Hr)
Rainfall intensity = 2.803(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method)(Q=KCIA) is C = 0.611
Subarea runoff = 8.644(CFS) for
                                  8.300(Ac.)
Total runoff = 31.343(CFS)
Effective area this stream =
                             18.30(Ac.)
Total Study Area (Main Stream No. 1) = 18.30(Ac.)
Area averaged Fm value = 0.900(In/Hr)
Depth of flow = 0.667(Ft.), Average velocity = 5.903(Ft/s)
```

Process from Point/Station 2.000 to Point/Station 3.000 **** CONFLUENCE OF MAIN STREAMS ****

The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 18.300(Ac.)
Runoff from this stream = 31.343(CFS)

Time of concentration = 20.02 min.
Rainfall intensity = 2.803(In/Hr)

Area averaged loss rate (Fm) = 0.9000(In/Hr)

Area averaged Pervious ratio (Ap) = 0.9000

Program is now starting with Main Stream No. 2

Process from Point/Station 4.100 to Point/Station 4.000 **** USER DEFINED FLOW INFORMATION AT A POINT ****

Process from Point/Station 4.000 to Point/Station 3.000

**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

```
Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.785(Ft.), Average velocity = 5.352(Ft/s)
     ****** Irregular Channel Data *******
______
Information entered for subchannel number 1:
Point number 'X' coordinate 'Y' coordinate
     1
                 0.00
                                 1.50
     2
                15.00
                                 0.00
                 30.00
                                 1.50
Manning's 'N' friction factor = 0.028
______
Sub-Channel flow = 32.986(CFS)
 ' ' flow top width = 15.701(Ft.)
          velocity= 5.352(Ft/s)
      ' area = 6.163(Sq.Ft)
  ' Froude number = 1.506
Upstream point elevation = 2924.000(Ft.)
Downstream point elevation = 2867.000(Ft.)
Flow length = 1600.000(Ft.)
Travel time = 4.98 \text{ min}.
Time of concentration = 31.66 min.
Depth of flow = 0.785(Ft.)
Average velocity = 5.352(Ft/s)
Total irregular channel flow = 32.986(CFS)
Irregular channel normal depth above invert elev. = 0.785(Ft.)
Average velocity of channel(s) = 5.352(Ft/s)
 Adding area flow to channel
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 25.00
Adjusted SCS curve number for AMC 1 = 12.00
Pervious ratio(Ap) = 0.9000 Max loss rate(Fm) = 0.900(In/Hr)
Rainfall intensity = 2.034(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method)(Q=KCIA) is C = 0.530
Subarea runoff = 4.098(CFS) for 9.300(Ac.)
Total runoff = 34.998(CFS)
Effective area this stream = 32.50(Ac.)
Total Study Area (Main Stream No. 2) = 50.80(Ac.)
Area averaged Fm value = 0.837(In/Hr)
Depth of flow = 0.803(Ft.), Average velocity = 5.432(Ft/s)
```

Process from Point/Station 4.000 to Point/Station 3.000 **** CONFLUENCE OF MAIN STREAMS ****

The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 32.500(Ac.)
Runoff from this stream = 34.998(CFS)
Time of concentration = 31.66 min.
Rainfall intensity = 2.034(In/Hr)
Area averaged loss rate (Fm) = 0.8371(In/Hr)

Area averaged Pervious ratio (Ap) = 0.9714

Program is now starting with Main Stream No. 3

Process from Point/Station 5.100 to Point/Station 5.000 **** USER DEFINED FLOW INFORMATION AT A POINT ****

Process from Point/Station 5.000 to Point/Station 3.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated mean flow rate at midpoint of channel = 0.000(CFS) Depth of flow = 0.967(Ft.), Average velocity = 8.168(Ft/s) ****** Irregular Channel Data *******

```
_____
Information entered for subchannel number 1:
Point number 'X' coordinate 'Y' coordinate
     1
                 0.00
                                 1.00
     2
                  2.00
                                 0.00
     3
                 12.00
                                  0.50
                              0.90
                 32.00
Manning's 'N' friction factor = 0.020
_____
Sub-Channel flow = 109.692(CFS)
 ' ' flow top width = 31.933(Ft.)
          velocity= 8.168(Ft/s)
           area = 13.429(Sq.Ft)
           Froude number =
Upstream point elevation = 2898.000(Ft.)
Downstream point elevation = 2867.000(Ft.)
Flow length = 800.000(Ft.)
Travel time = 1.63 min.
Time of concentration = 35.31 min.
Depth of flow = 0.967(Ft.)
Average velocity = 8.168(Ft/s)
Total irregular channel flow = 109.692(CFS)
Irregular channel normal depth above invert elev. = 0.967(Ft.)
Average velocity of channel(s) = 8.168(Ft/s)
 Adding area flow to channel
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 25.00
Adjusted SCS curve number for AMC 1 = 12.00
Pervious ratio(Ap) = 0.9000 Max loss rate(Fm) = 0.900(In/Hr)
Rainfall intensity =
                       1.884(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method)(Q=KCIA) is C = 0.509
Subarea runoff = 11.245(CFS) for Total runoff = 115.345(CFS)
                                  8.100(Ac.)
Effective area this stream =
                            120.20(Ac.)
Total Study Area (Main Stream No. 3) = 171.00(Ac.)
Area averaged Fm value = 0.818(In/Hr)
```

Depth of flow = 0.980(Ft.), Average velocity = 8.331(Ft/s)

Process from Point/Station 5.000 to Point/Station 3.000

**** CONFLUENCE OF MAIN STREAMS ****

```
The following data inside Main Stream is listed:
In Main Stream number: 3
Stream flow area = 120.200(Ac.)
Runoff from this stream = 115.345(CFS)
Time of concentration = 35.31 min.
Rainfall intensity = 1.884(In/Hr)
Area averaged loss rate (Fm) = 0.8178(In/Hr)
Area averaged Pervious ratio (Ap) = 0.9933
Summary of stream data:
                 Area
                                        Rainfall Intensity
Stream Flow rate
                         TC
                                 Fm
No. (CFS) (Ac.)
                         (min) (In/Hr)
                                          (In/Hr)
            18.300
                               0.900
     31.34
                        20.02
                                           2.803
     35.00
             32.500
                        31.66
                                 0.837
                                           2.034
    115.35 120.200
                        35.31
                                 0.818
                                           1.884
Qmax(1) =
                           31.343) +
        1.000 *
                 1.000 *
                 0.632 *
        1.643 *
                            34.998) +
        1.862 *
                 0.567 *
                          115.345) + =
Qmax(2) =
               1.000 * 31.343) +
1.000 * 34.998) +
0.897 * 115.345) + =
        0.596 *
        1.000 *
       1.140 *
                                            171.595
Qmax(3) =
                1.000 *
                            31.343) +
        0.517 *
                 1.000 *
        0.875 *
                            34.998) +
        1.000 *
                  1.000 * 115.345) + =
                                            162.177
Total of 3 main streams to confluence:
Flow rates before confluence point:
                35.998
     32.343
                         116.345
Maximum flow rates at confluence using above data:
     189.454
                 171.595
                              162.177
Area of streams before confluence:
                 32.500
      18.300
                             120.200
Effective area values after confluence:
     106.995
               158.575
                           171,000
Results of confluence:
                   189.454(CFS)
Total flow rate =
Time of concentration = 20.020 min.
Effective stream area after confluence =
                                         106.995(Ac.)
Study area average Pervious fraction(Ap) = 0.979
Study area average soil loss rate(Fm) = 0.830(In/Hr)
```

Study area total = 171.00(Ac.)
End of computations, Total Study Area = 171.00 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Note: These figures do not consider reduced effective area
effects caused by confluences in the rational equation.

Area averaged pervious area fraction(Ap) = 0.979 Area averaged SCS curve number = 59.8

